A Straightforward Entry into Polyketide Monoprenylated Furanocoumarins and Pyranocoumarins ${ }^{\mathbf{1}}$

Giovanni Appendino, ${ }^{\dagger}$ Giancarlo Cravotto,*,t Giovanni B. Giovenzana, ${ }^{\S}$ and Giovanni Palmisano*, \ddagger
Dipartimento di Scienza e Tecnol ogia de Farmaco, Facoltà di Farmacia, via Giuria 9, 10125 Torino, Italy, Dipartimento di Chimica Organica eIndustriale, via Venezian 21, 20135 Milano, Italy, and
Dipartimento di Scienze Mediche, Facoltà di Farmacia, viale Ferrucci 33, 28100 Novara, Italy

Received May 21, 1999
A regioselective synthesis of 5-methyl- and 5-ethyl-4-hydroxycoumarin ($\mathbf{1 b}$ and $\mathbf{1 c}$, respectively) is described. Starting from these compounds, several prenylated polyketide coumarins of limited availability from natural sources and important taxonomic relevance were prepared.

Coumarin derivatives are widespread in nature, especially in higher plants, ${ }^{2}$ and the coumarin system is a versatile template, amenable by appropriate molecular decoration to a great variety of applications within the realm of pharmaceuticals, ${ }^{3}$ asymmetric syntheses, ${ }^{4}$ and chiral separations. ${ }^{5}$ Many biologically active coumarins bear an oxygen function at C-4, with pre-eminent examples being the hemorrhagic toxin ferulenol ${ }^{6}$ and the topoisomerase inhibitor novobiocin ${ }^{7}$ from plant and mold sources, respectively. ${ }^{8}$ In sharp contrast to 7-hydroxycoumarins, 4-hydroxycoumarins can originate either from the shikimate or from the polyketide route, ${ }^{9}$ and the presence of a substituent at C-5 (methyl-, ethyl-) is the hallmark of this pathway. Although 4-hydroxycoumarin (1a) is an inexpensive commercial chemical, its 5-methyl- and 5-ethylderivatives ($\mathbf{1 b}$ and $\mathbf{1 c}$) are only available through multistep, low-yielding, and generally nonregioselective syntheses. ${ }^{10}$

Polyketide coumarins have a narrow distribution in plants and are almost invariably prenylated. The attachment is generally bidentate, resulting in the formation of a pyranocoumarin or a furanocoumarin system. These compounds are common within the Mutisieae tribe of the Compositae families ${ }^{2 c, d}$ but are otherwise very rare and, therefore, of exceptional taxonomic value. ${ }^{11}$ The structural complexity of polyketide coumarins has sparked intense synthetic activity culminating in several elegant syntheses, mainly by Bohlmann's group. ${ }^{12}$ Paradoxically, many simpler members of the class have never been synthesized. This is even more surprising when one considers that these compounds, available by isolation only in minute amounts, are the most useful from a chemotaxonomic point of view, having been found al so in the "difficult" and complex family of the Meliaceae. ${ }^{11}$ The pharmacology of these compounds is virtually unexplored, notwithstanding their isolation from plants used in traditional medicine ${ }^{13}$ and the powerful antiprotozoal activity displayed by certain sesquiterpene polyketide coumarins. ${ }^{14}$

The availability of an expeditious synthesis of these compounds should prompt a systematic investigation on their occurrence and pharmacological potential. With this aim in mind, we have developed a straightforward synthesis of 5-methyl- and 5-ethyl-4-hydroxycoumarins. These compounds were then reacted with commercially available

[^0]prenyl building blocks to afford, after further modification, all of the core pyranocoumarins and furanocoumarins of the monoprenyl type. Their corresponding 5-nor derivatives, hitherto unknown as natural products, were also synthesized for comparison.

Results and Discussion

Ethyl 6-methyl-(2b) and 6-ethylsalicylate (2c) were identified as suitable starting materials for the synthesis of $\mathbf{1 b}$ and $\mathbf{1 c}$, respectively. Compounds $\mathbf{2 b}$ and $\mathbf{2 c}$ are not commercially available, but an expeditious procedure for the preparation of $\mathbf{2 a}$ from crotonaldehyde and ethyl acetoacetate via Robinson annulation and aromatization has been reported (Scheme 1). ${ }^{15}$ We modified the reported procedure (see Experimental Section) and extended it to the preparation of $\mathbf{2 c}$ by replacement of crotonaldehyde with its homol ogue (pent-2-enal). 4-H ydroxy-5-methylcoumarin ($\mathbf{l b}$) was next prepared by reacting $\mathbf{2 b}$ with the lithium enol ate of tert-butyl acetate (Rathke salt), ${ }^{16}$ generated in the presence of an excess LDA (lithium diisopropylamide) to avoid its re-protonation by the phenolic hydroxyl of $\mathbf{2 b}$. After considerable optimization, a protocol employing 5.5 equiv LDA and 3.5 equiv Rathke salt was established. The excess tert-butyl acetate is necessary to suppress the formation of N, N-diisopropyl-6-methylsalicylamide, the result of competitive nucleophilic attack by LDA on the ester carbonyl of $\mathbf{2 b}$. The use of alternate hindered bases (LiHDMS, LiTMP) did not substantially increase the yield. The crude Claisen adduct 3a was next stirred with neat trifluoroacetic acid to affect the cydlization to $\mathbf{1 b}$, eventually obtained in overall 85% yield from $\mathbf{2 b}$. A similar procedure from $\mathbf{2 c}$ afforded $\mathbf{1 c}$ in comparable yield.

The methyl group of $\mathbf{2 b}$ provided a handle for functionalization, paving the way to chain extension. As an example of these possibilities, an alternate preparation of $\mathbf{2 c}$, using $\mathbf{2 b}$ as the starting material, was executed. Thus, after protection of the phenolic hydroxyl of $\mathbf{2 b}$ as a BOC (butoxycarbonyl) derivative and metalation with LDA in the presence of TMEDA ($\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}$-trimethylenediamine), ${ }^{17}$ the deep-orange solution of the 6-lithiomethyl anion of BOC-protected $\mathbf{2 b}$ was quenched with methyl iodide. Deprotection with neat formic acid afforded directly $\mathbf{2 c}$.
With a source of $\mathbf{1 b}$ and $\mathbf{1 c}$ secured, we moved on to the introduction of the prenyl residues. The synthesis of the pyranocoumarins 4a-c capitalized on a domino Knoev-enagel-electrocydic reaction, using 3-methyl-2-butenal as a bidentate prenyl synthon. ${ }^{18}$ Thus, starting from 4-hydroxycoumarin and its 5-methyl and 5-ethyl derivatives,

Scheme 1. Synthesis of 5-M ethyl- and
5-Ethyl-4-hydroxycoumarin (1b,c)

(b R:H; c R:Me)
Scheme 2. Synthesis of the Pyranocoumarins 4a-c and 5a,b

(a R:H; b R:Me; c R:Et)
nor-bothrioclinin (4a), bothrioclinin (4b), ${ }^{19}$ and homobothrioclinin (4c) ${ }^{19}$ were obtained (Scheme 2). The spectroscopic data on $\mathbf{4 b}$ and $\mathbf{4 c}$ were identical to those reported for the natural products. ${ }^{19}$ Ytterbium triflate proved superior to the Tietze base (diethylendiammonium diacetate) to promote the reaction. ${ }^{20}$ Catalytic hydrogenation of the pyranocoumarin adducts afforded the corresponding 2,3dihydroderivatives, one of which is known as a natural product (pterophyllin III, 5b). ${ }^{11}$

To synthesize the prenylated coumarins of the furanotype, we relied on the cerium [IV]ammonium nitrate (CAN)-mediated oxidative addition of 1a,b to 2-methyl-3-buten-2-ol (Scheme 3). ${ }^{21}$ The reaction was regioselective in the carbon-carbon-forming step, but poorly discriminating in the following carbon-oxygen-formation step, because the oxygen of both the ketone- and the lactone-carbonyl could be involved. As a result, a mixture of linear ($\mathbf{6 a}, \mathbf{b}$) and angular adducts (7a,b) was obtained (Scheme 3). These compounds were easily separated by column chromatography, with the linear adduct being eluted first from Si gel column chromatography in all cases. The spectroscopic assignment of $\mathbf{6 a , b}$ and $\mathbf{7 a , b}$ relied on diagnostic differences in the chemical shift of the atom at C-5 (deshielding peri-effect of the ketone carbonyl in the linear adducts 7a,b) and in the frequency of the carbonyl stretching (lactone vs enone). ${ }^{21,22}$ Compound $\mathbf{6 b}$ was identical to the natural product isoerlangeafusciol. ${ }^{23}$ The adducts from the furano series could be regioselectively dehydrated using either the Burgess ${ }^{24}$ or the sulfurane M artin reagent. ${ }^{25}$ In this way pterophyllin I (8b) ${ }^{11}$ as well as its nor-derivative (8a), yet unreported as a natural product, could be obtained.

In conclusion, a straightforward entry into the most elementary members of the pyrano- and furano-polyketide prenylated coumarins has been achieved. The increased availability of these important taxonomic markers should

Scheme 3. Synthesis of the Furanocoumarins $\mathbf{7 a , b}$ and $\mathbf{8 a , b}$

spur studies aimed at a better evaluation of their puzzling, scattered distribution in plants and of their biological activity.

Experimental Section

General Experimental Procedures. Anhydrous conditions were achieved (when indicated) by flame-drying flasks and equipment. Reactions were monitored by TLC on Alugram Sil-Macherey Nagel ($\mathrm{F}_{254}, 0.25 \mathrm{~mm}$) plates, and spots were detected by UV inspection or staining with 5% aqueous KMnO_{4} or $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in EtOH and heating. Merck Si gel was used for open-column chromatography and MPLC (70-230 mesh and 230-440 mesh, respectively). MPLC was carried out on a Büchi instrument B 680A, equipped with a B 685-type column. Waters microPorasil 7.8-300 and Merck Hibar 25-250 columns were used for semi preparative HPLC, with detection by a Gilson 133 refractive index refractometer. Melting points were obtained on a Büchi SMP-20 apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR (300 and 200 MHz) and ${ }^{13} \mathrm{C}$ NMR (75 MHz) spectra were recorded on a Bruker AC-300 and Bruker AC200 spectrometers at $25^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts refer to CHCl_{3} at 7.26 ppm , and CDCl_{3} at 77.0 ppm , respectively. LRMS were performed on a Finnigan-MAT TSQ70 in chemical ionization with isobutane as reactant gas. Commercially available reagents and solvents were used without further purification unless otherwisestated. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried by distillation from $\mathrm{P}_{4} \mathrm{O}_{10}$ and THF by distillation from Na benzophenone.

Ethyl 6-Methylsalicylate (2b). The condensation between ethyl acetoacetate ($132 \mathrm{~mL}, 1.04 \mathrm{~mol}$) and crotonaldehyde (85.8 $\mathrm{mL}, 1.04 \mathrm{~mol})$ in the presence of sodium ethoxide (30 mmol) was carried out according to H auser and Pogany ${ }^{15}$ a. After the aromatization with CuCl_{2} and LiCl in DMF at $90^{\circ} \mathrm{C}$, the dark brown reaction mixture was cooled to room temperature, diluted with ice-water and poured on a Celite-Si gel bed previously prepared on a sintered glass funnel ($180 \mathrm{~mm}, 100$ g Celite and 150 g Si gel). After filtration with suction and washing with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~L})$ to remove DMF, $\mathbf{2 b}$ was eluted with petroleum ether. Further purification was achieved with fractional distillation under vacuum ($80^{\circ} \mathrm{C}, 0.66 \mathrm{kPa}$) and a normal air condenser, occasionally heated to avoid clogging from lumps of solidified distillate. Compound $\mathbf{2 b}(86 \mathrm{~g}, 46 \%)$ was obtained as pale yellow crystals; $\mathbf{2 b}$ could alternatively be purified by MPLC (petroleum ether-EtOAc 95:5): R_{f} (hexane-EtOAc 7:3) 0.64.

Ethyl 6-Ethylsalicylate (2c). To a cooled ($0^{\circ} \mathrm{C}$) two-necked round-bottomed flask, equipped with a pressure-equalizing addition funnel, magnetic stirrer, and nitrogen inlet, 37.8 mL
(287 mmol) of ethyl acetoacetate and 57 mL of sodium ethoxide (8.57 mmol) in EtOH were sequentially added. 2-Pentenal (29 $\mathrm{mL}, 0.297 \mathrm{mmol}$) was then added over 5 min . After stirring 30 min at $0^{\circ} \mathrm{C}$, the solution was allowed to warm to room temperature for 48 h , and saturated by bubbling $\mathrm{HCl}(15 \mathrm{~min}$ at $0^{\circ} \mathrm{C}$). After stirring two further days at room temperature, the solution was freed of HCl by stripping under vacuum (water pump) and mild heating. The dark brown residue obtained in this way was dissolved in DMF (50 mL) and heated at $90^{\circ} \mathrm{C}$ under magnetic stirring. Then, $32.93 \mathrm{~g}(0.297 \mathrm{~mol})$ CuCl_{2} and $17.30 \mathrm{~g}(0.408 \mathrm{~mol}) \mathrm{LiCl}$ were added, and the flask was immediately connected to a Drechsel bottle containing 3N NaOH . After 3 h , the dark reaction mixture was cool ed to room temperature and treated as described for $\mathbf{2 b}$. The crude reaction mixture was purified by column chromatography using petroleum ether as the eluent, affording 31 g of $\mathbf{2 c}$ (54\%) as a straw-colored oil: IR (liquid film) 3350, 1662, 1608, 1451, $1248,1209 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.25(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.32$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}-4), 6.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}-5), 6.75$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}-3), 4.46\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}-1^{\prime}\right), 2.97$ $(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}-7), 1.45\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}-2^{\prime}\right), 1.23$ $(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}-8){ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 171.4(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, 162.35 ($\mathrm{s}, \mathrm{C}-2$), 147.40 ($\mathrm{s}, \mathrm{C}-6$), 134.13 ($\mathrm{d}, \mathrm{C}-4$), 121.57 ($\mathrm{d}, \mathrm{C}-5$), 115.49 ($\mathrm{d}, \mathrm{C}-3$), 111.83 ($\mathrm{s}, \mathrm{C}-1$), 61.52 ($\mathrm{t}, \mathrm{C}-\mathrm{l}^{\prime}$), 29.49 ($\mathrm{t}, \mathrm{C}-7$), 16.15 and 13.90 (2 q, C-2' and C-8); LRMS $195\left(\mathrm{MH}^{+}, \mathrm{CIMS}\right.$); R_{f} (hexane-EtOAc 9:1) 0.57; anal. cal co for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$; C 68.02, H 7.26; found C 67.99, H 7.28.

Ethyl 6-Ethylsalicylate by Homologation of 2b. (a) Protection of the phenolic hydroxyl. In a two-necked roundbottomed flask equipped with magnetic stirrer and nitrogen inlet, $\mathbf{2 b}$ ($6.312 \mathrm{~g}, 35 \mathrm{mmol}$) was dissolved in 30 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. To this sol ution, 7.19 mL (42.07 mmol) N-ethyl diisopropylamine (Hünig base), 9.191 g (42.07 mmol) di-(t-butyl)dicarbonate, and a few crystals DMAP (4-(dimethylamino)pyridine) were added. After stirring overnight, the reaction was diluted with 100 mL of CHCl_{3}, washed with $2 \mathrm{~N} \mathrm{HCl}(3 \times 50 \mathrm{~mL})$ and brine $(2 \times 50 \mathrm{~mL})$, and dried over MgSO_{4}. Removal of the solvent left a yellow oil, purified by column chromatography (100 g Si gel, petroleum ether-EtOAc 19:1 as eluent) to afford 9.52 g (97% yield) of a pale yellow oil: IR (liquid film) 1763, 1731, 1468, 1379, 1235, 1152, $872 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.33(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, $\mathrm{H}-4), 7.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-5), 7.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}$, $\mathrm{H}-3$), $4.38\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{I}^{\prime}\right), 2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 1.53$ (9H, s, t-Bu), 1.39 (3H, t, J = $7.1 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$); LRMS $281\left(\mathrm{MH}^{+}\right.$, CIMS); R (hexane-EtOAc 8:2) 0.35.
(b) Homologation. To a $100-\mathrm{mL}$, three-necked round-bottomed flask equipped with a pressure-equalizing addition funnel, magnetic stirrer, nitrogen inlet, and a thermometer, dry THF (10 mL), TMEDA ($650 \mu \mathrm{~L}, 4.37 \mathrm{mmol}$), diisopropylamine ($775 \mu \mathrm{~L}, 8.63 \mathrm{mmol}$), and N -benzylbenzamide (3 mg) were added. The solution was cooled ($-78^{\circ} \mathrm{C}$), and n -BuLi (1.6 M in hexanes, $5.16 \mathrm{~mL}, 8.22 \mathrm{mmol}$) was added slowly. After 30 min , a solution of $1.441 \mathrm{~g}(5.14 \mathrm{mmol})$ ethyl $2-\mathrm{O}-\mathrm{BOC}-6-$ methylsalicylate in 10 mL of THF was added over 5 min , during which the solution turned from dark blue to red and then to orange. The solution was then stirred at $-78{ }^{\circ} \mathrm{C}$ for 40 min , and a solution of methyl iodide ($2.56 \mathrm{~mL}, 41.12 \mathrm{mmol}$) in THF (5 mL) was added, causing the reaction mixture to turn yellow. The solution was allowed to warm to room temperature overnight, and then quenched by the addition of ice-cooled saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$ and EtOAc (40 mL). The organic layer was washed with brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and then concentrated under reduced pressure. The crude yellow oil obtained in this way was purified by column chromatography (25 g Si gel, petroleum etherEtOAc 19:1 as eluent) to afford 1.027 g (68\%) ethyl O-2-BOC6 -ethylsalicylate as a colorless oil: IR (liquid film) 1768, 1735, 1460, 1369, 1281, 1236, 1185, $733 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} \delta$ $7.35(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}-4), 7.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{H}-5)$, $7.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{H}-3), 4.38\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}-1^{\prime}\right)$, $2.72(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-7), 1.53(3 \mathrm{H}, \mathrm{s}, \mathrm{t}-\mathrm{Bu}), 1.37(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=7.0 \mathrm{~Hz}, \mathrm{H}-8) ; 1.23\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5, \mathrm{H}-2^{\prime}\right)$; LRMS $295\left(\mathrm{MH}^{+}\right.$, CIMS); R_{f} (hexane/EtOAc 8:2) 0.46.
(c) Deprotection. A mini-vial was charged with ethyl 2-BOC 6-ethyl salicylate ($1.0 \mathrm{~g}, 3.4 \mathrm{mmol}$) and $\mathrm{HCO}_{2} \mathrm{H}(1 \mathrm{~mL})$ and left for 4 h in the refrigerator at $5^{\circ} \mathrm{C}$. The solution was then poured into ice-water (50 mL), neutralized with NaHCO_{3}, and extracted with EtOAc. The organic layer was washed with brine (80 mL) , dried (MgSO_{4}), filtered, and evaporated. The residue was purified by column chromatography (20 g Si gel, petroleum ether-EtOAc 19:1 as eluent) to give $606 \mathrm{mg}(92 \%)$ of $\mathbf{1 c}$.
4-Hydroxy-5-methylcoumarin (1b). To a 200-mL threenecked round-bottomed flask equipped with a pressure-equalizing addition funnel, magnetic stirrer, nitrogen inlet, and a thermometer, diisopropylamine ($7.08 \mathrm{~mL}, 50.48 \mathrm{mmol}$), Nbenzylbenzamide (5 mg), and dry THF (20 mL) were added. The solution was cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$, and $\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $30.1 \mathrm{~mL}, 48.15 \mathrm{mmol}$) was added slowly. After 30 min , a solution of tert-butyl acetate ($3.56 \mathrm{~g}, 30.62 \mathrm{mmol}, 3.5$ mol. equiv.) in 10 mL of THF was added over 5 min , during which time the solution turned from dark blue to deep yellow. The solution was then stirred at $-78^{\circ} \mathrm{C}$ for 50 min , and a solution of ethyl 6 -methylsalicylate (2b) $1.68 \mathrm{~g}(8.75 \mathrm{mmol})$ in 10 mL THF was added over 5 min . After warming to room temperature overnight, the reaction was quenched by the addition of ice-cooled saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and EtOAc (80 mL). The organic layer was washed with brine (100 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by medium-pressure column chromatography (40 g Si gel; packing with petroleum ether, followed by petroleum ether-EtOAc 9:1) to afford 319 mg (19\%) of recovered ethyl 6 -methylsalicylate (2b) and 942 mg (71\%) of 3b as pale-yellow oil: IR (liquid film) 2980, 1730, 1455, 1148, 1034, $781 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 7.27(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}, \mathrm{H}-4), 6.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-5), 6.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5$ $\mathrm{Hz}, \mathrm{H}-3), 3.91\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.53(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 1.45$ ($9 \mathrm{H}, \mathrm{s}$, t-Bu); LRMS $251\left(\mathrm{MH}^{+}\right)$; R_{f} (hexane-EtOAc 9:1) 0.64; anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$; C 67.18, H 7.25; found C 67.53 , H 7.21 .

When 1.2 equiv tert-butyl acetate was used, the yield dropped to 19%, and N, N-di (isopropyl)-6-methyl salicylamide was also isolated in 15% yield as colorless needles: mp 212$214{ }^{\circ} \mathrm{C}$; IR (KBr) 2950, 2693, 1600, 1575, 1460, 1369, 1298, $1038,785 \mathrm{~cm}^{-1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.58(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH})$, $6.66(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-4), 6.33(2 \mathrm{H}, \mathrm{m}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-3$ and $\mathrm{H}-5), 3.40$ and $3.18\left(2 \mathrm{H}\right.$, br $\left.\mathrm{s}, \mathrm{R}-\mathrm{CH}-\mathrm{Me}_{2}\right)$, $1.89(3 \mathrm{H}, \mathrm{s}$, Me-aryl), 1.23 ($6 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Me}_{2}-\mathrm{CHR}$), 0.81 (6 H br d, J $=7.0$ $\mathrm{Hz}, \mathrm{Me}_{2}-\mathrm{CHR}$); LRMS 236 (MH^{+}); R R_{f} (hexane-EtOAc 3:7) 0.58; anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}$; C 71.46, H 8.99, N 5.95; found C 71.39, H 8.96, N 5.92. A mini-vial was charged with 3b (1.0 $\mathrm{g}, 4 \mathrm{mmol}$) and trifluoroacetic acid (0.5 mL). The mixture was shaken vigorously (10 min) and allowed to settle at room temperature for 4 h . A pale yellow solid formed, which was collected on a sintered glass filter and washed with a 3:1 mixture of petrol eum ether and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The filtrate was concentrated and cooled ($4^{\circ} \mathrm{C}$) to afford a second crop of $\mathbf{l b}$ as a yellowish powder. The overall yield was (584 mg) 83\%: mp: $229-230{ }^{\circ} \mathrm{C}$ [lit. ${ }^{26} 221-223^{\circ} \mathrm{C}$]; IR (KBr) 3384, 1649, 1559, $1344,1262,820 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.41(1 \mathrm{H}, \mathrm{br}$ s, OH), $7.46(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}-7), 7.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}-6)$, $7.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5, \mathrm{H}-8), 5.56(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 2.66(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$; ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$) $\delta 161.5$ (s, C-2), 91.3 (d, C-3), 168.7 (s, C-4), 114.4 (s, C-4a), 137.2 (s, C-5), 127.2 (d, C-6), 131.8 (d, C-7), 114.9 (d, C-8), 155.1 (s, C-8a), 22.8 (q, C-9); LRMS $177\left(\mathrm{MH}^{+}\right.$); $\mathrm{R}_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O} 8: 1: 1\right) 0.75$; anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{3}$; C, 68.16, H 4.58; found C 68.20, H 4.5 .

4-Hydroxy-5-ethylcoumarin (1c). The same procedure described for the preparation of $\mathbf{1 b}$ from $\mathbf{2 c}$ was employed. Compound 1c was obtained in 60\% overall yield. Data for (3c): colorless oil, IR (KBr) 3400, 1732, 1698, 1466, 1323, 1286, $1255,1152 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.24(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, $\mathrm{H}-4), 6.82$ and $6.79(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-3$ and $\mathrm{H}-5)$, $3.89(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-10), 2.74(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{H}-4), 1.42(9 \mathrm{H}, \mathrm{s}$, $\mathrm{t}-\mathrm{Bu}), 1.29$ (3H, t, Me); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 205.2$ (s, C-9), 132.8 (d, C-4), 120.8 and 114.9 (d, d, C-3 and C-5), 51.8 (t, C-10), 27.75 (q, C- tBu), 27.1 (t, C-7), 15.9 ($\mathrm{q}, \mathrm{C}-8$); LRMS 264 (MH^{+}, CIMS); R_{f} (hexane-EtOAc 9:1) 0.52; anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$; C 68.16, H 7.63; found C 68.10, H 7.69. Data for Compound 1c: IR (KBr) 3380, 1638, 1597, 1344, 1302, $821 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}\right) \delta 12.37(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.45(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-7)$, $7.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-6), 7.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-8)$, $5.57(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 3.08(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}-9), 1.18(3 \mathrm{H}, \mathrm{t}$, $\mathrm{H}-10) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 168.32$ (s, C-4), 161.56 (s, C-2), 155.16 (s, C-8a), 143.61 (s, C-5), 131.82 (d, C-7), 125.96 (d, C-6), 114.82 (d, C-8), 113.70 (s, C-4a), 91.59 (d, C-3), 28.31 (t, C-9), 16.74 (q, C-10); LRMS 191 ($\left.\mathrm{MH}^{+}, \mathrm{CIMS}\right) ; \mathrm{R}_{\mathrm{f}}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\right.$ $\mathrm{H}_{2} \mathrm{O}$ 8:1:1) 0.75 ; anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3}$; C 69.46, H 5.30; found C 69.48, H 5.22

2,2,10-Trimethyl-2H ,5H-pyrano [3,2-c][1]benzopyran-5-one (Bothrioclinin, 4b). 4-H ydroxy-5-methylcoumarin (1b) ($200 \mathrm{mg}, 1.14 \mathrm{mmol}$) and 3-methyl-2-butenal (120 $\mu \mathrm{L}, 1.25$ mmol) were dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$, and a catalytic amount of diethylendiammonium diacetate (5 mg) was added. The reaction was stirred for 3 h at room temperature. Removal of the solvent left an oily residue, then purified by column chromatography (15 g Si gel, petroleum ether-EtOAc 8:2) to afford $200 \mathrm{mg} \mathrm{4b}$ (73\%) as a white powder: mp $135-137^{\circ} \mathrm{C}$ (diethyl ether); IR (KBr) 1713, 1595, 1464, 1234, 1055, 980, $871 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.33\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{~J}^{\prime}=\right.$ $7.4, \mathrm{H}-8), 7.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}-9), 7.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4$ $\mathrm{Hz}, \mathrm{H}-7), 6.54$ and $5.36(2 \mathrm{H}, \mathrm{AB}$ syst., $\mathrm{J}=10.0, \mathrm{H}-4$ and $\mathrm{H}-3)$, $2.71(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-10)$, $1.56\left(6 \mathrm{H}, \mathrm{s}, 6 \mathrm{H}, \mathrm{Me}_{2} \mathrm{CR}_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 80.5$ (q, C-2), 125 (d, C-3), 117.3 (d, C-4), 100.6 (s, C-4a), 160.7 (s, C-5), 154.0 (s, C-6a), 115.3 (d, C-7), 131.3 (d, C-8), 127.4 (d, C-9), 137.0 (s, C-10), 114.3 (s, C-10a), 161.5 (s, C-10b), 28.4 (q, C-11), 28.4 (q, C-12), 20 (q, C-13); LRMS 243 (MH ${ }^{+}$); R_{f} (hexane-EtOAc 7:3) 0.44; anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} ; \mathrm{C} 74.36$ H 5.82; found C 74.37, H 5.77

2,2-dimethyl-pyrano[3,2-c][1]benzopyran-5-one (4a) was prepared in a similar way from 4-hydroxycoumarin (1a) in 77\% yield. F or data, see Appendino et al. ${ }^{18}$

2,2-Dimethyl-10-ethyl-2H ,5H-pyrano[3,2-c][1]benzo-pyran-5-one (Methylbothrioclinin, 4c). The same procedure used to prepare 4b was employed, but 4-hydroxy-5ethylcoumarin (1c) was used as starting material, Yb(OTf) ${ }_{3}$ (5 mg) as the catalyst, and MeCN as the solvent. Compound 4c was obtained as colorless crystals in 87% yields; mp $83^{\circ} \mathrm{C}$; IR (KBr) 3455, 1709, 1593, 1466, 1045, $731 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.38(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-8), 7.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7$ $\mathrm{Hz}, \mathrm{H}-9), 7.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{H}-7), 6.56(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0$ $\mathrm{Hz}, \mathrm{H}-4), 5.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{H}-3), 3.11(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.4$ $\mathrm{Hz}, \mathrm{H}-11), 1.58\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{CR}_{2}\right), 1.26(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H}-12)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 80.5$ (q, C-2), 117.2 (d, C-3), 115.2 (d, C-4), 100.4 (s, C-4a), 160.9 (s, C-5), 154.4 (s, C-6a), 125.0 (d, C-7), 126.3 (d, C-8), 131.4 (d, C-9), 143.4 (s, C-10), 113.5 (s, C-10a), 169.2 (s, C-10b), 28.9 (q, C-11), 17.0 (t, C-12), 28.2 (q, C-13) LRMS 257 (MH^{+}, CIMS); R f (hexane-EtOAc 7:3) 0.65; anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{3} ; \mathrm{C} 74.98$, H 6.29; found C 74.77, H 6.35.

3,4-Dihydro-2,2,10-trimethyl-2H ,5H-pyrano [3,2-c][1]-benzopyran-5-one (Pterophyllin III, 5b). To a solution of 4b ($100 \mathrm{mg}, 0.41 \mathrm{mmol}$) in EtOAc (5 mL), 20\% palladium hydroxide on carbon (25 mg) was added. The flask was evacuated and purged with dry nitrogen three times, and then placed under an atmosphere of hydrogen (101.32 kPa). After 3 h , the reaction mixture was filtered through a pad of Celite, and the residue was washed with EtOAc (100 mL). The filtrate and the washings were evaporated, and the residue was purified by column chromatography (5 g Si gel, hexane-EtOAc 19:1) to give 5b ($74 \mathrm{mg}, 75 \%$) as a colorless solid: mp 110$112{ }^{\circ} \mathrm{C}$ (diethyl ether) [lit. ${ }^{11}$ gum, $58-60^{\circ} \mathrm{C}$]; IR (KBr) 1699, $1618,1443,1323 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.31(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8$ $\mathrm{Hz}, \mathrm{H}-8), 7.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{H}-9), 7.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4$ $\mathrm{Hz}, \mathrm{H}-7), 2.68$ (3H, s, Me-10), 2.59 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{H}-3$), $1.84(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{H}-4), 1.44\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}-12\right.$ and 13); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 78.1$ (q, C-2), 31.4 (t, C-3), 17.5 ($\mathrm{t}, \mathrm{C}-4$), 99.3 ($\mathrm{s}, \mathrm{C}-4 \mathrm{a}$), 163.0 (s, C-5), 158.6 (s, C-6a), 115.1 (d, C-7), 130.8 (d, C-8), 127.3 (d, C-9), 138.4 (s, C-10), 114.9 (s, C-10a), 161.8 (s, C-10b), 23.5 ($q, C-11$), 26.7 ($q, C-12$ and $q, C-13$); LRMS $245\left(\mathrm{MH}^{+}\right)$; R_{f} (hexane-EtOAc 7:3) 0.47; anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}$; $\mathrm{C} 73.75, \mathrm{H} 6.60$; found C 73.78, H 6.58

2-(1-Hydroxy-1-methylethyl)-9-methyl-2,3-dihydrofuro-[3,2-c][1]benzopyran- 2(3H)-one (I soerlangeafusciol, 7b). $5-M$ ethyl-4-hydroxycoumarin (1b) ($200 \mathrm{mg}, 1.14 \mathrm{mmol}$) was suspended in dry MeCN (15 mL) in the presence of 2-methyl-

3-buten-2-ol ($98 \mathrm{mg}, 1.14 \mathrm{mmol}$). The suspension was cooled to $0^{\circ} \mathrm{C}$, and a solution of CAN ($1.557 \mathrm{~g}, 2.84 \mathrm{mmol}$) in MeCN $\left(15 \mathrm{~mL}\right.$) was added. After stirring 1 h at $0^{\circ} \mathrm{C}$, the reaction mixture was diluted with 30 mL of $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\operatorname{EtOAc}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$ and brine (20 mL). After drying $\left(\mathrm{MgSO}_{4}\right)$ and removal of the solvents, the dark residue was purified by column chromatography (20 g Si gel, hexanes-EtOAc 7:3 as eluent) to provide, in order of elution, $133 \mathrm{mg}(45 \%)$ isoerlangeafusciol (7b) as colorless solid, and its linear isomer (allo-isoerlangeafusciol, 6b) ($48 \mathrm{mg}, 21 \%$). Data for 7b: IR (KBr) 3432, 1693, 1603, 1485, 1169, 1057, $799 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.42(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-7)$, $7.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-8), 7.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-6)$, $4.91(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}, \mathrm{H}-2), 3.10(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.6 \mathrm{~Hz}, \mathrm{H}-3)$, $2.68(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-9), 2.0(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.48(\mathrm{~s})$ and $1.43(\mathrm{~s})$ (6H, $\mathrm{Me}_{2}-\mathrm{C}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 92.7$ (d, C-2), $27.0(\mathrm{t}, \mathrm{C}-3)$, 102.7 (s, C-3a), 166.5 (s, C-4), 155.7 (s, C-5a), 117.2 (d, C-6), 135.7 (d, C-7), 126.2 (d, C-8), 131.5 (d, C-9), 114.9 (s, C-9a), 160.5 (s, C-9b), 71.5 ($s, C-1^{\prime}$), 25.6-24.5 (q, q, C-2' and C-3') 21.1 (s, C-10); LRMS 261 (MH^{+}); R_{f} (hexane-EtOAc 3:7) 0.46; anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$; C 69.22, H 6.20; found C 69.43 , H 6.19. Data for 6b: IR (KBr) 3310, 1643, 1605, 1468, 1265, 1130, 937, $794 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.40(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9, \mathrm{H}-7)$, 7.19 (d) and 7.13 (d) $(2 \mathrm{H}, \mathrm{J}=8.1,7.4 \mathrm{~Hz}, \mathrm{H}-6$ and $\mathrm{H}-8), 4.83$ $(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz}, \mathrm{H}-2), 3.11(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}, \mathrm{H}-3), 2.88$ (3H, s, Me-5), 2.31 (1H, br s, OH), 1.37 (s) and 1.28 (s) (6 H , $\left.\mathrm{Me}_{2}-\mathrm{CR}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 90.7(\mathrm{~d}, \mathrm{C}-2)$, , $26.1(\mathrm{t}, \mathrm{C}-3)$, 95.7 (s, C-3a), 177.5 (s, C-4), 121.7 (s, C-4a), 141.0 (s, C-5), 128,6 (d, C-6), 131,1 (d, C-7), 115.1 (d, C-8), 154.9 (s, C-8a), 167.3 (s, C-9a), 71.4 (s, C-10), 25.2-23.9 (q, q, C-11, C-12), 22.5 (q, C-13); LRMS 261 (MH^{+}); R R_{f} (hexane-EtOAc 3:7) 0.32; anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$; C 69.22, H 6.20; found C 69.36, H 6.17.
2-(1-Hydroxy-1-methylethyl)-2,3-dihydrofuro[3,2-c][1]-benzopyran-2(3H)-one (nor-I soerlangeafusciol, 7a). This compound and its linear isomer (6a) were obtained from 4-hydroxycoumarin (la) using the same procedure employed for the synthesis of $\mathbf{7 b}$. The yield was 51% for the angular isomer, and 24% for the linear one. Data for 7a: IR (KBr) 3432, 1709, 1647, 1418, 1032, 908, 754, cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.66\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{~J}{ }^{\prime}=1.5 \mathrm{~Hz}, \mathrm{H}-9\right), 7.52(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7$ $\mathrm{Hz}, \mathrm{H}-7), 7.32(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{H}-8), 7.25(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7$ $\mathrm{Hz}, \mathrm{H}-6), 4.93(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.4 \mathrm{~Hz}, \mathrm{H}-3), 2.38(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, 1.38 (s), and $1.27(\mathrm{~s}),\left(6 \mathrm{H}, \mathrm{Me}_{2}-\mathrm{C}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 93.1$ (d, C-2), 27.7 (t, C-3), 102.6 (s, C-3a), 166.5 (s, C-4), 154.7 (s , C-5a), 116.8 (d, C-6), 132.2 (d, C-7), 122.5 (d, C-8), 123.8 (d, C-9), 112.2 (s, C-9a), 160.6 ($\mathrm{s}, \mathrm{C}-9 \mathrm{~b}$), 71.5 (s, C-1'), 25.4-24.3 (q, q, C-2' and C-3'); LRMS 247 (MH^{+}); R (hexane-EtOAc 3:7) 0.45 . Data for 6a: IR (KBr) 3328, 1701, 1620, 1466, 1414, 1213, 756, cm^{-1}; ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.74(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 7.50(1 \mathrm{H}, \mathrm{m}$, H-7), 7.35 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), $7.28(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 4.80(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=9.0$ $\mathrm{Hz}, \mathrm{H}-2), 3.10(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{H}-3), 2.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, 1.33 (s) and $1.25(\mathrm{~s}),\left(6 \mathrm{H}, \mathrm{Me}_{2}-\mathrm{CR}_{2}\right) ;$ LRMS $247\left(\mathrm{MH}^{+}\right) ; \mathrm{R}_{\mathrm{f}}$ (hexane-EtOAc 2:8) 0.34.

2-(1-Methylethenyl)-9-methyl-2,3-dihydrofuro[3,2-c][1]-benzopyran-2(3H)-one (Pterophyllin I, 8b): A solution of the angular adduct (7 bb) ($100 \mathrm{mg}, 0.38 \mathrm{mmol}$) in anhydrous $\mathrm{C}_{6} \mathrm{H}_{6}(4 \mathrm{~mL})$ was refluxed for 30 min in the presence of Burgess reagent (methoxycarbonylsulfamoyl-triethylammonium hydroxide inner salt) ($100 \mathrm{mg}, 0.42 \mathrm{mmol}$). The solution was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc, washing the organic phase with brine and then drying it over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by column chromatography (hexanesEtOAc $8: 2$ as eluent) to give 44.2 mg (48%) $\mathbf{8 b}$ as a colorless gum: mp 58-60 ${ }^{\circ} \mathrm{C}$ [lit. $1161^{\circ}-63^{\circ} \mathrm{C}$]; IR (KBr) 1720, 1632, 1601, 1454, 1049, 1018, $792 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.42(1 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{H}-7), 7.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{H}-8), 7.07(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-6), 5.51(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.4,8.2 \mathrm{~Hz}, \mathrm{H}-2), 5.14$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime} \mathrm{a}$), 5.02 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime} \mathrm{b}$), 3.33 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.3,10.6$ $\mathrm{Hz}, \mathrm{H}-3 \mathrm{a}$), 2.98 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2,15.3 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 2.70(3 \mathrm{H}, \mathrm{s}$, Me-1'), and 1.84 (3H, s, Me-9); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 89.09$ (d, $\mathrm{C}-2$), 31.06 ($\mathrm{t}, \mathrm{C}-3$), 128.8 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 168.3 ($\mathrm{s}, \mathrm{C}-4$), 156.0 (s , C-4a), 115.0 (d,C-6), 131.6 (d, C-7), 126.3 (d, C-8), 136.2 (s, C-9), 111.9 (s, C-9a), 163.0 (s, C-9b), 142.4(s, C-1'), 113.0 (t, C-2'), 17.1 ($q, C-3^{\prime}$), 21.3 (s, C-10); LRMS $243\left(\mathrm{MH}^{+}\right)$; R_{f} (hexane-

EtOAc 4:6) 0.68; anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$; C 74.36, H 5.82 found C 74.40, H 5.81.

2-(1-Methylethenyl)-2,3-di hydrofuro[3,2-c][1]benzo-pyran-2(3H)-one (nor-Pterophyllin I, 8a). The same procedure described above, but using 7 a as the starting material, gave the title compound in 51% yield: IR (KBr) 1720, 1630, $1600,1452,1040,1016,788 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.70(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-9), \delta 7.58(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{H}-7), 7.40(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{H}-6), 7.30(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{H}-8), 5.53(1 \mathrm{H}$, dd, J $\left.=10.2 \mathrm{~Hz}, \mathrm{~J}^{\prime}=8.4, \mathrm{H}-2\right), 5.16\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime} \mathrm{a}\right), 5.02(1 \mathrm{H}$, s, H-2'b), 3.36 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.4,10.4 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{a}), 3.02(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=8.1,15.3 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b})$, 1.82 (3H, s, Me-2'); LRMS $243\left(\mathrm{MH}^{+}\right)$; R_{f} (hexane-EtOAc 4:6) 0.65 ; anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3}$; C 73.67 , H 5.30; found C 73.62, H 5.30.

Acknowledgment. This work was supported by MURST (Progetto Chimica dei Composti Organici di Interesse Biologico, Fondi Ex 40\%).

References and Notes

(1) The Chemistry of Coumarin Derivatives, 10. For Part 9, see Appendino et al. ${ }^{21 b}$
(2) Murray, R. D. H.; Mendez, J .; Brown, S. A. The Natural Coumarins, Wiley: Chichester, UK, 1982. (b) Murray, R. D. H. In Progress in the Chemistry of Organic Natural Products; Herz, W., Kirby, G. W., Moore, R. E., Steglich, W., Tamm, C., Eds.; Springer: New York, 1991; Vol. 58, pp 83-283. (c) Murray, R. D. H., ibidem, 1997; Vol. 72, pp 1-119. (d) Estevez-Brown, A.; Gonzales, A. G. Nat. Prod. Rep. 1997, 141, 465-475.
(3) Zembower, D. E.; Liao, S.; Flavin, M. T.; Xu, Z.; Stup, T. L.; Buckheit, R. W.; Khilevich, A., J r.; Mar, A. A.; Sheinkman, A. K.J. Med. Chem. 1997, 40, 1005-1017
(4) Whitesell, J. K.; A podaca, R. Tetrahedron Lett. 1997, 38, 2589-2592.
(5) Nagasawa, K.; Yamashita, A.; Katoh, S.; Ito, K.; Wada, K. Chem. Pharm. Bull. 1995, 43, 344-346.
(6) Isolation: Carboni, S.; Malaguzzi, V.; Marsili, A. Tetrahedron Lett 1964, 2783-2786. (b) Configurational assignment: Valle, M. G.; Appendino, G.; Nano, G. M.; Picci, V. Phytochemistry 1987, 26, 253256. (c) Synthesis: Appendino, G.; Cravotto, G.; Nano, G. M.; Palmisano, G. Synth. Commun. 1992, 22, 2205-2212.
(7) Kaczka, E. A.; Wolf, F. G.; Rathe, F. P.; Folkers, K. J. Am. Chem. Soc. 1955, 77, 6604-6605.
(8) Dicoumarol, the archetypal coumarin anticoagulant, is derived from the microbial transformation of ortho-hydroxycinnamic acid and melilotic acid and is therefore of "mixed" origin (see Murray²a pp 182185).
(9) Inoue, T.; Toyonaga, T.; Nagumo, S.; Nagai, M. Phytochemistry 1989, 28, 2329-2330.
(10) Pasupati, S.; Manju, S.; Pradip, K; Wenkert, E. J . Indian Chem. Soc. 1985, 62, 916-919. (b) Okogun, J. I.; Enienihi, V. U.; Ekong, D. E. U. Tetrahedron 1978, 34, 1221-1224. (c) Waterman, P. G.; Zhong, S. M.; J effreya, J.A.; Zakaria M. J. Chem. Res. 1985, 1, 101-144.
(11) Mulholland, D. A.; Iourine, S. E.; Tailor D. A. H.; Dean, F. M. Phytochemistry 1988, 47, 1641-1644.
(12) Kuhnke, J .; Bohlmann, F. Liebigs Ann. Chem. 1988, 743-748.
(13) Mulholland, D. A., Anstract O-20, 39th Annual Meeting of the American Society of Pharmacognosy; Orlando, FL, J uly 19-24, 1998.
(14) Oketch-Rabah, H. A.; Lemmich, E.; Dossaji, S. F.; Theander, T. G.; Olsen, C. E.; Cornett, C.; Kharazmi, A.; Christensen, S. B. J . Nat. Prod. 1997, 60, 458-461.
(15) Hauser, F. M.; Pogany, S. A. Synthesis 1980, 814-815. (b) Hamada, Y.; Hara, O.; K awai, A.; K ohno, Y.; Shioiri T. Tetrahedron. 1991, 47, 8635-8638.
(16) Rathke, M. W.; Sullivan, D. F. J . Am. Chem. Soc. 1973, 95, 30503051.
(17) Hamada, Y.; Hara, O.; Kawai, A.; K ohno, Y.; Shioiri, T. Tetrahedron 1991, 47, 8635-8652.
(18) Appendino, G.; Cravotto, G.; Tagliapietra, S.; Nano, G. M.; Palmisano, G. Helv. Chim. Acta 1990, 73, 1865-1878.
(19) Bohlmann, F.; Zdero, C. Phytochemistry 1977, 16, 1261-1263.
(20) K obayashi, S. Synlett. 1994, 689-701
(21) Appendino, G.; Cravotto, G.; Annunziata R.; Palmisano, G. Synth. Commun. 1996, 26, 3359-3371. (b) Appendino, G.; Cravotto, G.; Annunziata R.; Palmisano, G. Tetrahedron 1998, 54, 10819-10826.
(22) Appendino, G.; Cravotto, G.; Toma, L.; Annunziata R.; Palmisano, G. J. Org. Chem. 1994, 59, 5556-5564.
(23) Rustaiyan, A.; Nazarians, L.; Bohlmann, F. Phytochemistry 1980, 19, 1254-1255.
(24) Burgess, E. M.; Penton, J r., H. R.; Taylor, E. A. J . Org. Chem. 1973, 38, 26-31.
(25) Martin, J. C.; Arhart, R. J. J. Am. Chem. Soc. 1971, 93, 4327-4329.
(26) Omori, A.; Sonoda, N.; Uchida, Y.; Tsutsumu, S. Bull. Chem. Soc. J pn. 1969, 42, 3-3237.

NP9902410

[^0]: * To whom correspondence should be addressed. Tel.: +39 0116707684 (GC). Fax: + 390116707687 (GC). E-mail: cravotto@pharm.unito.it (GC).
 ${ }^{\dagger}$ Dipartimento di Scienza e Tecnologia del Farmaco.
 § Dipartimento di Chimica Organica e Industriale.
 ₹ Dipartimento di Scienze Mediche.

